Python Pandas

Pandas, derived from the term “panel data” is a Python software library used for data manipulation and analysis. It was designed to solve the complexities of working with structured data, especially in tabular format like Excel, CSV, SQL and time series type data.

Pandas use cases:

TaskPandas Functionality
Load data from CSV/Excel/SQLpd.read_csv(), pd.read_excel(), pd.read_sql()
Filter rows/columnsdf[df[‘col’] > 10], df[[‘col1’, ‘col2’]]
Handle missing datadf.dropna(), df.fillna()
Group / aggregatedf.groupby(‘category’).mean()
Merge / join datasetspd.merge(df1, df2, on=’id’)
Reshape datadf.pivot_table(), df.stack()
Time series analysisdf.resample(‘D’).mean()
Plottingdf.plot() (via Matplotlib integration)